Category Archives: BREIN

Color visualization improved

The generation of sRGB values for color visualization on computer displays has been improved. Most colors look significantly brighter now. Be aware, however, that you can still not fully trust color visualizations unless you have a calibrated screen.

 

 

MSVCP120.DLL is missing …

If you try to run CODE, SCOUT or SPRAY with object generation 4.50 or higher and you get this message please install the Visual C++ Redistributable package for Visual Studio 2013. Here is the link:

https://www.microsoft.com/en-us/download/details.aspx?id=40784

If you follow the ‘Download’ section you have to select the vcredist_x86.exe. Running this will install the required DLL files.

OJL model improved

The gamma value of the OJL model had been limited to values above 150 1/cm to avoid numerical problems. This restriction has been removed in the following way: As a new available option you can set the limit yourself, executing the menu command File/Options/Optical model/Set minimum value of gamma in OJL models. The new limit is applied to all OJL models that you use in this particular configuration. Note, however, that the new value is not stored as a general setting – it is only active and stored in the configuration you are working with.

BREIN viewer

We have started to implement a viewer application that allows to watch the BREIN operator screen on other computers in the network. The network viewers automatically get a screenshot every few seconds.

Copying products much easier

Use the new menu command Actions/Clone current product to copy the currently selected product to a new product. The new product is automatically added to the products.ini file.

After the copy activity BREIN selects the new product and asks you if you want to delete all result files and clear the database.

Finally you can use the new command Actions/Set target values to open a workbook showing all target values and tolerances and modify the settings.

 

Optical measurements with a vertical traverse system

Meanwhile we have learned to control the motion of traverse systems. This enables us to record position dependent spectra and generate color profiles as well as thickness profiles. These give valuable information for operators controlling  large area coaters. Results are available immediately after production.

Our first system records transmittance and reflectance spectra (from both sides of large glass substrates) in the range 380 … 1000 nm. Data are recorded with Zeiss MMS1 spectrometers and tec5 electronics. 2 stabilized halogen light sources provide the required radiation.

All 3 spectra are taken simultaneously at the same sample spot. Here are some sketches of the optical setup:

WOSP_8deg_Traverse_1

WOSP_8deg_Traverse_2

The spectrometer units (including light sources and electronics) are mounted on 2 vertical rail systems (made by ITEM). The rail systems are mechanically synchronized and driven by a Trinamic stepper motor.

The measuring heads can be positioned at any location on the glass as well as several calibration positions below the glass.

The whole system fits in a container of 400 mm width and 1000 mm length. This was a requirement of our customer. The open slit in the middle provides enough space for the glass (more than 2500 mm) to move through the system:

WOSP_8deg_Traverse_3

The spectrometers as well as the stepper motor are controlled by our CODE software. CODE scripts are used to execute actions like calibration and automatic scans. Measurements can be triggered by an OPC connection – in this case CODE provides an OPC client.

Light source and measuring heads for transmission and reflection, mounted on the rail system:

WOSP_8deg_Traverse_5

System opened, showing one measuring head with electronics and the energy chain for power supply and ethernet connection:

WOSP_8deg_Traverse_6

Typical spectra of high quality:

WOSP_8deg_Traverse_7

The measured spectra show excellent agreement with those measured by a laboratory research instrument in the range 380 … 950 nm):

wosp

Coupled to our BREIN software operators get information about inhomogeneities across the pane (transmittance,reflectance, color). The display below shows a thickness vs. position for the last 3 panes:

WOSP_8deg_Traverse_8

We can provide similar solutions for horizontal scanning as well, IN addition, we can mount measuring heads for any angle of incidence in the range 8° … 60 °.

In the case of light scattering products such as textured solar glass we can provide an excellent measuring system recording R and T using an integrating sphere.

CODE goes OPC …

During the last months we have implemented a lot of hardware related functions in CODE. Powerful script commands can be used to perform automated optical measurements. Trigger objects can execute actions based on obtained values of spectrometers, optical sensors or motors.

We have now opened a connection to the outside industrial world by adding OPC clients (available in the list of spectrometers). A client automatically connects to a server and retrieves a parameter value at a user-defined rate. The value is available as optical function and can be used in trigger conditions. This way CODE actions can be triggered externally.

A typical application is triggering spectrum recording based on the position of a product in a production line.

Spectrometer triples …

In order to realize some hardware projects we have implemented spectrometer objects that can handle up to 3 Avantes or tec5 spectrometers. Spectra are recorded simultaneously.

We have used these objects for production control systems recording transmittance and reflectance from both sides of coated glass. In addition, we use 3 spectrometers in an integrating sphere system that records reflectance and transmittance of light scattering samples like textured solar glass.